
Mitigating greenhouse gases – Agriculture's role

Johan Six Plant Sciences UCDavis

The Earth's Greenhouse Effect

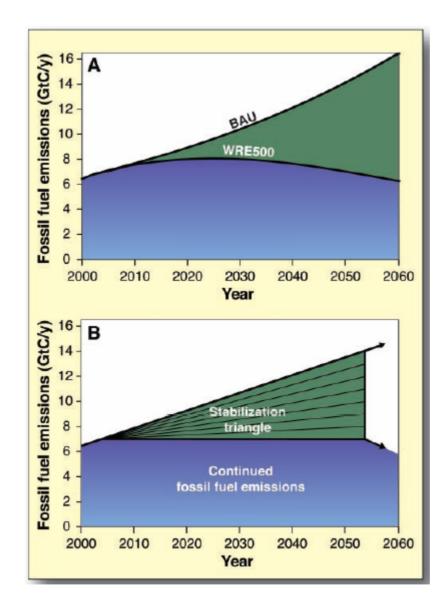
About half the solar energy absorbed at the surface evaporates water, adding the most important greenhouse gas to the atmosphere. When this water condenses in the atmosphere, it releases the energy that powers storms and produces rain and snow. About 30% of incoming solar energy is reflected by the surface and atmosphere.

SPACE

Only a small ammount of the heat energy emitted from the surface passes through the atmosphere directly to space. Most is absorbed by greenhouse gas molecules and contributes to the energy radiated back down to warm the surface and lower atmosphere. Increasing the concentrations of greenhouse gases increases the warming of the surface and slows loss of energy to space.

ATMOSPHERE

SURFACE


The surface cools by radiating heat energy upward. The warmer the surface, the greater the amount of heat energy that is radiated upward.

Projected Climate Change

- Global average temperatures predicted to increase by approx 2-5 °C by 2050
- Regional and local changes variable and difficult to predict
- California
 - 2-4°C increase in temperatures (greatest in winter)
 - Regional precipitation changes vary (+ vs -) between models, difficult to predict.
 - Snowpack decreased
 - Increased variability in weather (most likely)

Likely consequences

- Effects on crop productivity
 - Maybe positive or negative in US depending on location/crop type
 - Likely increase in pest (weed, insect) pressure
 - 'Migration' of cropping systems necessary as an adaptive strategy (incurring relocation costs)
 - Greater problems for resource-poor farmers in tropics
- Potential for greater weather extreme
 - Drought, hurricanes, blizzards, floods

Pacala and Socolow 2004

Table 1. Potential wedges: Strategies available to reduce the carbon emission rate in 2054 by 1 GtC/year or to reduce carbon emissions from 2004 to 2054 by 25 GtC.

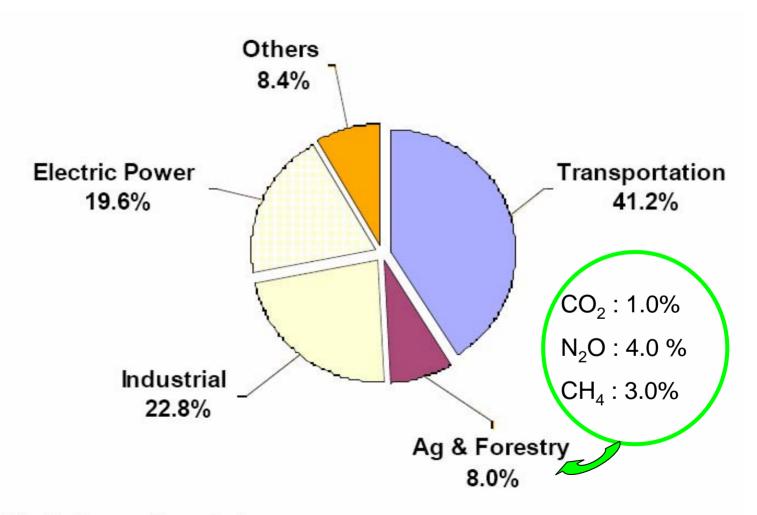
Option	Effort by 2054 for one wedge, relative to 14 GtC/year BAU	Comments, issues	
Economy-wide carbon-intensity	Energy efficiency and conservation Increase reduction by additional 0.15% per year	Can be tuned by carbon policy	
reduction (emissions/\$GDP)	(e.g., increase U.S. goal of 1.96% reduction per year to 2.11% per year)		
1. Efficient vehicles	Increase fuel economy for 2 billion cars from 30 to 60 mpg	Car size, power	
2. Reduced use of vehicles	Decrease car travel for 2 billion 30-mpg cars from 10,000 to 5000 miles per year	Urban design, mass transit, telecommuting	
3. Efficient buildings	Cut carbon emissions by one-fourth in buildings and appliances projected for 2054	Weak incentives	
4. Efficient baseload coal plants	Produce twice today's coal power output at 60% instead of 40% efficiency (compared with 32% today)	Advanced high-temperature materials	
	Fuel shift		
 Gas baseload power for coal baseload power 	Replace 1400 GW 50%-efficient coal plants with gas plants (four times the current production of gas-based power)	Competing demands for natural gas	
6. Capture CO ₂ at baseload power	CO ₂ Capture and Storage (CCS) Introduce CCS at 800 GW coal or 1600 GW natural	Technology already in use for H ₂ productio	
plant 7. Capture CO ₂ at H ₂ plant	gas (compared with 1060 GW coal in 1999)	L safaty infrastructure	
7. Capture CO ₂ at H ₂ plant	Introduce CCS at plants producing 250 MtH ₂ /year from coal or 500 MtH ₂ /year from natural gas (compared with 40 MtH ₂ /year today from all sources)	H ₂ safety, infrastructure	
 Capture CO₂ at coal-to-synfuels plant 	Introduce CCS at synfuels plants producing 30 million barrels a day from coal (200 times Sasol), if half of feedstock carbon is available for capture	Increased CO ₂ emissions, if synfuels are produced without CCS	
Geological storage	Create 3500 Sleipners	Durable storage, successful permitting	
	Nuclear fission		
9. Nuclear power for coal power	Add 700 GW (twice the current capacity) Renewable electricity and fuels	Nuclear proliferation, terrorism, waste	
10. Wind power for coal power	Add 2 million 1-MW-peak windmills (50 times the current capacity) "occupying" 30×10^{6} ha, on land or offshore	Multiple uses of land because windmills are widely spaced	
11. PV power for coal power	Add 2000 GW-peak PV (700 times the current capacity) on 2 $ imes$ 10 ⁶ ha	PV production cost	
 Wind H₂ in fuel-cell car for gasoline in hybrid car 	Add 4 million 1-MW-peak windmills (100 times the current capacity)	H ₂ safety, infrastructure	
13. Biomass fuel for fossil fuel	Add 100 times the current Brazil or U.S. ethanol production, with the use of 250×10^6 ha (one-sixth of world cropland) Forests and agricultural soils	Biodiversity, competing land use	
 Reduced deforestation, plus reforestation, afforestation, and new plantations. 	Decrease tropical deforestation to zero instead of 0.5 GtC/year, and establish 300 Mha of new tree plantations (twice the current rate)	Land demands of agriculture, benefits to biodiversity from reduced deforestation	
15. Conservation tillage	Apply to all cropland (10 times the current usage)	Reversibility, verification	

What gases are of importance to agriculture ?

CO_2

Sources: Fossil fuels, biomass burning, soil degradation **Sinks:** Buildup soil organic matter and plant biomass GWP (Global Warming Potential) = 1

N_2O


Sources: Fertilizer, crop residues, manure **Sinks:** No agricultural sinks $GWP = \sim 300$

CH₄

Sources: Livestock, manure, anaerobic soils (rice) **Sinks:** Aerobic soils, especially forests and grasslands $GWP = \sim 20$ Globally, agriculture (20%) and land use change (14%) contribute about **1/3** of the total GHG emissions (as 'radiative' forcing) from **all** anthropogenic sources.

In the US, agriculture accounts for about 8% of total GHG emissions (forestry is a substantial sink).

California

Source: California Energy Commission

Practices for C sequestration

- Reduced and zero tillage
- Set-asides/conversions to perennial grass
- Reduction in cultivated organic soils
- Reduction/elimination of summer-fallow
- Winter cover crops
- More hay in crop rotations
- Higher residue (above- & below-ground) yielding crops

Technical potential = 80-200 MMTC/yr

Practices for N₂O & CH₄ emission reduction

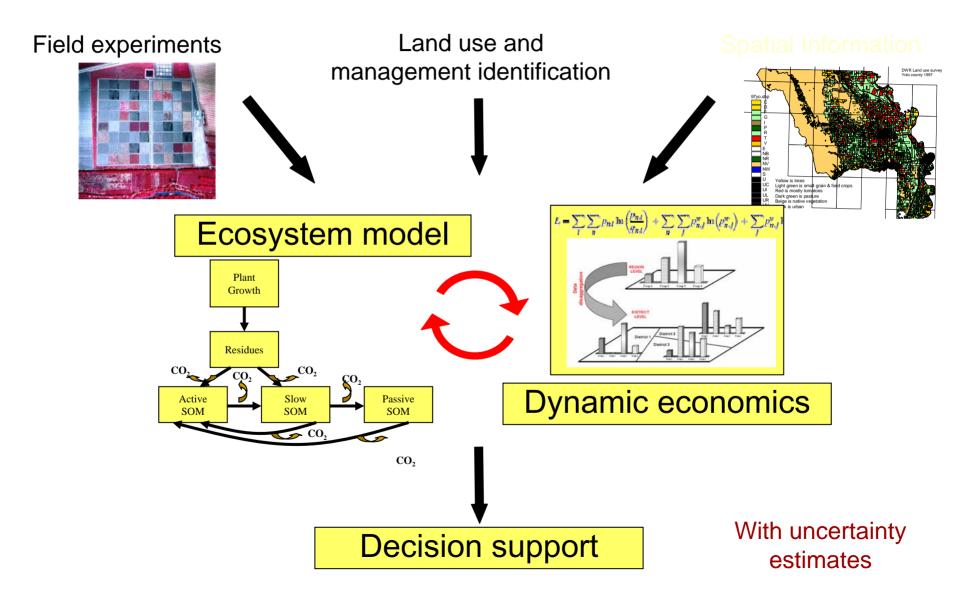
N₂O mitigation

•Better match of N supply to crop demand

•Better organic N (e.g. manure) recycling

•Advanced fertilizers (e.g. controlled release, nitrification inhibitor)

CH₄ mitigation

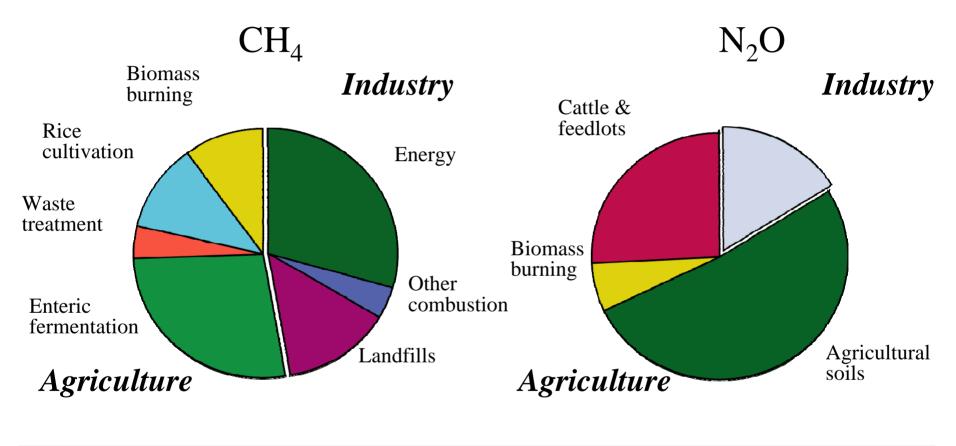

•Improved livestock breeding and reproduction

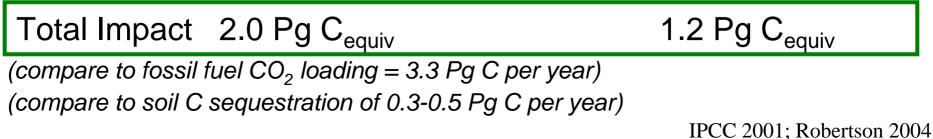
- •Nutrition (e.g. forage quality, nutrient balance, additives)
- •Methane capture from manure
- •Manure composting

•Rice (water and nutrient management)

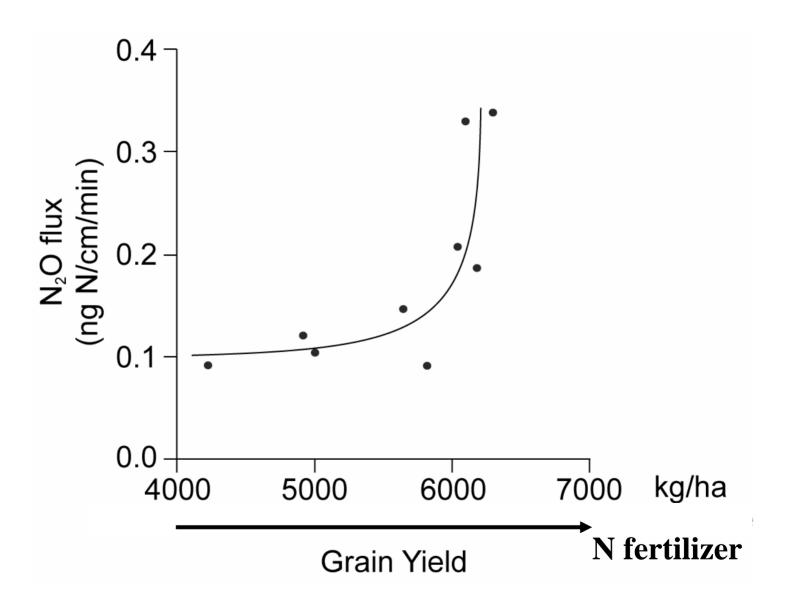
Technical potential = 40-50 MMTC Equivalent per year

Integrated modeling approach




Greenhouse gas budget: Five Points

- Reduced tillage can cut fuel-CO₂ emissions by half
- Integration of reduced tillage with cover cropping!


SOC		tCO ₂ e ha ⁻¹				
		STNO	STCC	CTNO	СТСС	
	Cotton	-0.11	-2.42	-0.92	-4.20	
	Tomato	-0.65	-2.53	-0.87	-3.71	
N ₂ O	297					
£	Cotton	1.62	1.04	1.33	0.80	
	Tomato	1.69	1.63	1.36	1.17	
CH₄	31					
	Cotton	-0.11	-0.12	-0.11	-0.11	
	Tomato	-0.11	-0.11	-0.11	-0.11	
Fuel-C	;					
	Cotton	0.51	0.57	0.25	0.27	
	Tomato	0.63	0.85	0.30	0.34	
SUM						
	Cotton	1.91	-0.93	0.54	-3.25	
	Tomato	1.56	-0.17	0.68	-2.31	
	system	1.73	-0.55	0.61	-2.78	

Anthropic Sources ofSlide courtesy
RobertsonMethane and Nitrous Oxide Globally

N₂O - Yield Threshold

McSwiney and Robertson, submitted

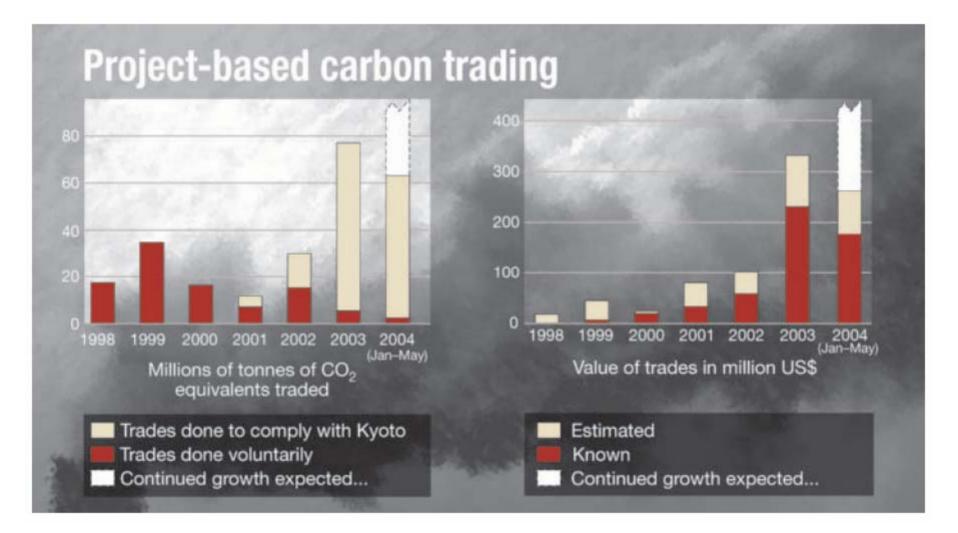
Slide courtesy

Robertson

Implementation

US Trading Initiatives and Activities

- Chicago Climate Exchange
- National Carbon Offset Coalition
- Commodity brokerage firms
 - Natsource
 - Cantor Fitzgerald
- Consultants
- NGOs
- State Initiatives



Economics

Slide courtesy Paustian

Hopkins 2004

Cost to Mitigate

Five Points

 STNO -> STCC
 \$35

 STNO -> CTNO
 \$0

 STNO -> CTCC
 \$35

European Market: \$34/tCO₂e

Issues

- Measurement and monitoring costs
 - Preliminary estimates of 'large project' measurement costs, suggest values < 5% of cost of C credits.
 - Transaction costs?
- 'Temporary' carbon storage who assumes the liability?
 - Long-term contracts

 $N_2O \rightarrow no issue$

- Leasing
- Additionality
 - Credit for 'early' adopters?
 - 'Fairness' vs economic efficiency

Ancillary benefits of GHG mitigation

C sequestering practices

- •Reduced erosion
- •Improved soil quality and fertility
- •Improved water quality
- •Conservation Reserve lands Wildlife habitat and biodiversity
- •Biofuel production

N₂O emissions reductions

- •Reduced leaching and ammonia volatilization
- •Improved water quality (well nitrate, hypoxia, algae blooms)
- •Less fertilizer waste

<u>CH</u>₄ emission reductions

•Improved water and air quality (manure handling, odors, runoff)

Conclusions

• Cover cropping and/or reduced tillage seem to have potential in California.

What about manure, compost, drip irrigation and set-aside?

• Fuel C and N₂O are major player in greenhouse gas budgets; especially in California

But measurements and modeling issues with $\mathrm{N}_2\mathrm{O}$

Conclusions

• Use of improved management practices show a significant technical potential for GHG mitigation, but agriculture is **only part** of the solution.

• Various issues need to be resolved with respect to implementation. However, no 'show-stoppers' so far.

• Bundling' GHG mitigation with other environmental goals should increase benefit and cost-efficiency of agricultural GHG policies.